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1 Introduction

When the local description of a physical system includes strong non-linearities, one tries

to trade the original variables for “better” variables, in terms of which nonlinear effects

become weaker. A goal more likely within reach is to find “good” observables whose

behavior displays the essence of the nonlinearity. In the context of relativistic field theory

these observables are non-local in terms of the original variables. As such, their definition

requires specific study of their renormalization.

In this paper we introduce a non-local operator in four dimensional gauge theory which

generalizes the Wilson loop associated with a closed one dimensional curve in spacetime to

an object associated with a closed two dimensional surface embedded in spacetime.
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2 Wilson loop operators

2.1 General properties

The nonlinear dynamics of pure SU(N) Yang Mills gauge theory on Euclidean R4 is best

captured by nonlocal observables. The Wilson loop operators are standard.

Trr〈Pe
i

H

C
A·dx〉 ≡ Trr〈Ω(C)〉 = Wr(C) (2.1)

Here r denotes an irreducible representation of SU(N), P denotes path ordering round a

closed, smooth, non-selfintersecting curve C, and A is the hermitian Yang Mills connection

of SU(N) Yang Mills theory in R4 with ordinary action. The θ parameter is set to zero.

The number of boxes modulo N in the Young pattern describing r is the N -ality k.

Assume that the curve C has a unique minimal spanning area A in the standard metric of

R4. A major feature of the theory is confinement: for k 6= 0 one has

log [Wr(C)] ∼
A→∞

− σkA (2.2)

Here the limit A → ∞ is taken at fixed loop shape, Ĉ, by uniformly dilating the loop

until the required value of A is achieved. σk > 0, the k-th string tension, does not depend

on Ĉ. Since we have set the θ-parameter to zero, charge conjugation gives σk = σN−k.

Thus, Wilson loop operators provide a precise definition of the property of confinement,

quantitatively expressed by the σk.

C can be parameterized by A and Ĉ. In perturbation theory a dependence on A comes

in only through the quantum violation of classical scale invariance. The behavior of Wr(C)

as A → 0 is determined by perturbation theory in terms of the scale ΛSU(N) which sets

a convention for a running coupling constant at short scales, common to all observables.

The perturbative expansion of Wr(C) is defined only after making some choices to fix free

parameters one encounters in the process of renormalization. These choices may extend

beyond perturbation theory, but should not affect σk.

The renormalization of Wr(C) is well understood [1, 2]. In perturbation theory one

needs to expand log[Wr(C)] and the needed “exponentiation” Feynman rules are known [3].

The conclusion is that for every r one has one operator dependent linear perimeter diver-

gence and all the other divergences are the same as in pure gauge theory. Imposing sym-

metry under conjugation of the renormalized Wilson loops leaves one new arbitrary real

finite part for distinct self-conjugate representations, r ∼= r̄, or pairs of distinct conjugate

representations, r 6≇ r̄.

2.2 Fermionic representation

We shall focus on the set of all single column (totally antisymmetric) representations. This

set has then
[

N
2

]

free real parameters. These parameters can be counted also by simulta-

neously dealing with all the Wr(C), assembled into the average characteristic polynomial:

P (z, C) = 〈det [z + Ω(C)]〉 = 〈det
[

1 + zΩ†(C)
]

〉 (2.3)

– 2 –
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The diagrammatic expansion rules for logP (z, C) are obtained from a fermionic repre-

sentation. Let X1,X2 . . . Xn be n arbitrary N ×N matrices and let X = X1X2 . . . Xn be

their matrix product. We then have the following identity [4, 5]:

∫ n
∏

j=1

[

dψ̄jdψj
]

e
Pn

j=1[ψ̄jXjψj+1−ψ̄jψj] = det(1 +X) (2.4)

Here ψn+1 ≡ −ψ1 and each ψj has N components. Taking a formal continuum limit we

get [10]:

det
[

1 + zΩ†(C)
]

=

∫

[

dψ̄dψ
]

e
R l

0 dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ) (2.5)

Here,

z = e−µl (2.6)

σ parametrizes C by x(σ). The parametrization [∂σxµ(σ)]2 = 1 identifies l as the length of

the loop. The continuum one dimensional fermions ψ̄(σ), ψ(σ) obey anti-periodic boundary

conditions round the curve. The one dimensional vector potential a is defined by the four

dimensional one:

a(σ) = Aµ(x(σ))
∂xµ(σ)

dσ
(2.7)

The diagrams are read off from the following path integral:

P (z, C) =

∫

[dAµ]
[

dψ̄dψ
] e

− 1
4g2

R

d4xTrF 2+
R l

0
dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ)

∫

[dAµ] e
− 1

4g2

R

d4xTrF 2
(2.8)

g is the gauge coupling and Fµν is the field strength made out of Aµ. One needs to choose

a gauge fixing convention and add the needed ghosts. This is done without reference to

the fermions.

The Feynman diagram expansion for log [P (z, C)] consists of connected diagrams which

look exactly like those for the fermion contribution to the free energy of ordinary QCD.

Only the mathematical expressions for the ψ̄ψA vertex and for the ψψ̄ propagator differ.

If the diagrams are viewed in Euclidean configuration space the expression for the ψ̄ψA

vertex is simple. The fermion propagator, S(σ), requires the inversion of the kernel taking

into account the boundary conditions. With |σ| < l (σ stands for σ1 − σ2 with 0 < σj < l)

it is given by [6]:

S(σ) = e−µσ
[

θ(σ) −
1

1 + eµl

]

(2.9)

S(σ) is diagonal in its suppressed SU(N) indices. The dependence on C comes from con-

nected vacuum diagrams containing at least one fermion loop and makes a contribution of

at most order N to the free energy if g2N is kept fixed.

Wr for r = N (the fundamental representation) can be extracted by taking µ→ ∞ and

picking out the term linear in z. For a given fermion loop the product of the prefactors of

S(σ) is one. All propagators are now θ-functions except one, which is −z. The fermion loop

gives another overall −1. The dropped θ function is equal to zero if all other θ functions

are equal to one. This recovers the pure gauge Feynman rules for the fundamental Wilson

– 3 –
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loop operator. To the same end, one could have also used the limit µ → −∞ (z → ∞)

giving Wr with r = N .

Standard power counting applies, producing all counter-terms potentially needed to

eliminate all ultraviolet divergence in perturbation theory. With a standard gauge fixing

method that is independent of C, BRST symmetry is preserved and the counter-terms have

to be BRST invariant.

σ has dimension length and therefore the fermions have zero dimension. Requiring

gauge invariance leaves, in addition to the standard counter-terms, N − 1 new dimension-

less counter-terms
[

ψ̄ψ
]k

, k = 1, . . . , N with dimension one coefficients reflecting linear

perimeter divergences in the Wilson loops underlying our observable. Setting µ = 0, con-

jugation invariance is preserved, acting as follows:

ψ → ψ̄, ψ̄ → ψ, Aµ → A∗
µ (2.10)

For odd k,
[

ψ̄ψ
]k

changes sign. Therefore, these counter-terms can be set to zero. The

parameter µ can be turned on perturbatively. By power counting, this could induce a new

ultraviolet divergence, but it is at most logarithmic and can be absorbed in µ. This leaves
[

N
2

]

independent counter-terms, corresponding to the perimeter divergences in Wr for r

given by a k-box column; conjugation symmetry exchanges k with N − k and we require

that it be obeyed by the counter-terms.

More new counter-terms, of the form
∫

ψ̄∂ψ
[

ψ̄ψ
]k

also are possible. They would

correspond to new types of logarithmic divergences. These counter-terms can be made

gauge invariant by minimal substitution. (There also is another set where the derivative

acts on ψ̄.) These terms can be ignored, since they can be eliminated by a field redefinition:

ψ = χ+ α1χ
(

ψ̄χ
)

+ α2χ
(

ψ̄χ
)2

+ . . .+ αN−1χ
(

ψ̄χ
)N−1

≡ χF
(

ψ̄χ
)

(2.11)

One can change the integration variables ψ to χ and the Jacobian will have the form of

the counter-terms already taken into account above. The inverse transformation is:

χ = ψ − α1ψ
(

ψ̄ψ
)

+ β2ψ
(

ψ̄ψ
)2

+ . . .+ βN−1ψ
(

ψ̄ψ
)N−1

≡ ψF̃
(

ψ̄ψ
)

(2.12)

with β2, . . . βN−1 determined by the αj . One has then

ψ̄∂ψ = ψ̄∂
[

χF
(

ψ̄χ
)]

= ψ̄ [∂χ]F
(

ψ̄χ
)

+ ψ̄χ
[

∂
(

ψ̄χ
)]

F ′
(

ψ̄χ
)

(2.13)

The last term is a total derivative, and can be dropped due to the boundary conditions.

There is a
[

N
2

]

real dimensional space in which to choose the finite parts of the diver-

gent quantities made finite by the counter-terms. Once this is done, one can calculate to

arbitrary order in perturbation theory. From the result, by taking derivatives with respect

to z at z = 0 one gets perturbative expressions for the N coefficients of z in P (z, C). The

expressions for each coefficient can be re-exponentiated, producing the final perturbative

expression for P (z, C) as a rank N polynomial in z. Alternatively, one could have computed

each coefficient independently in exponentiated form and never employed the fermions.

On the
[

N
2

]

dimensional submanifold of all possible finite part choices one has enough

freedom to ensure that the so obtained P (z, C) will have all its zeros on the unit circle.

– 4 –
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This is so because preserving charge conjugation guarantees that the polynomial in z will

be palindromic with real coefficients for any parameter choice [7]. Outside this submanifold

P (z, C) will have some roots off the unit circle for small enough A.

Comparing with the known results from diagrammatic analysis, the fermionic repre-

sentation is seen to produce correct free parameter counting in this case.

2.3 A large N phase transition

Using a lattice regularization one can define P (z, C) even beyond perturbation theory. One

can make sure that this fully defined P (z, C) has all its zeros on the unit circle for any

A [4, 8].

There is numerical evidence for the following: P (z, C) exhibits a nonanalytic behavior

as the loop C is kept at fixed shape Ĉ and scaled. We first take the large N limit in the

’t Hooft prescription at fixed z. The nonanalyticity occurs first at z = 1 as the loop is

scaled down from a large size. Wilson loops in SU(N) gauge theory in two, three and four

dimensions all exhibit this infinite N phase transition as they are shrunk from a large size

to a small one; in the course of this scaling down, the support of the eigenvalue distribution

of the untraced Wilson loop unitary matrix contracts from encompassing the entire unit

circle, to a small arc centered at z = −1 on the unit circle. An analogous effect takes place

in the two dimensional principal chiral model for SU(N) [9].

At finite ultraviolet cutoff, before the addition of the multi-fermion counter-terms, we

observe that the large N transition occurs when the the spectrum of D1(C) ≡ ∂σ − ia(σ),

which was gap-less for large A, opens a gap as A decreases through Ac. The spectrum of

Ω(C) directly determines the spectrum of D1(C), which can be viewed as a Dirac operator

in one Euclidean dimension [10]. This observation will partially motivate the generalization

in the next section.

The universality class of this transition is that of a random multiplicative ensemble

of unitary matrices. The transition was discovered by Durhuus and Olesen [11] when

they solved the Makeenko-Migdal [12] loop equations in two dimensional planar QCD. The

nature of the transition is now better understood. The authors of [13] proposed a relation

to Burgers’ turbulence [14] and there are exact results in 2D supporting their view [15].

For finite N , in two dimensions, Ω(C) is an SU(N) matrix diffusing on the SU(N) group

manifold. This holds approximatively also in four dimensions: see [16]. The “diffusion”

is imagined at fixed Ĉ and A plays the role of diffusion time. At infinite N the transition

occurs at A = Ac. For N ≫ 1, z ∼ 1 and at A ∼ Ac, P (z, C) [with Ĉ fixed] is described

by a universal function, with one, or perhaps two, non-universal, Ĉ dependent constants.

One constant sets the scale of A − Ac and the other sets the scale of N itself. There is

a possibility that the latter is actually always equal to unity on account of the discrete

nature of N , even though in the 1
N

expansion this does not come in.

For N ≫ 1 there is a sharp crossover in the critical region. This crossover separates

small loops of shape Ĉ from large ones with identical shape. The crossover connects two

distinct regimes. In the perturbative regime, one has, up to terms depending on the choices

– 5 –
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made for the finite parts

P (z, C) − (1 + z)N ∼
A→0

h0

(

Ĉ, N, z
)

log
[

AΛ2
SU(N)

] , (2.14)

while in the nonperturbative regime we have

P (z, C) −
(

1 + zN
)

∼
A→∞

(

z + zN−1
)

h∞

(

Ĉ, N
)

e−σ1A (2.15)

If we had an effective string algorithm to compute in the nonperturbative regime

and managed to carry out a perturbative calculation for small loops the two would be

connected at N ≫ 1 by a known universal function and, by matched asymptotics, we would

obtain the ratio σ1

Λ2
SU(N)

. A renormalization scheme that effectively fattens the Wilson loop

introduces [8] an additional scale which is finite in units of ΛSU(N) and which would alter

in a calculable way the asymptotic behavior as A → 0.

To ensure that P (z, C) has all its zeros on the unit circle for any area, a necessary

condition is
1

dr
Wr(C) < 1 (2.16)

for all r (dr is the dimension of r) and all A > 0 at fixed Ĉ. However, many reasonable

renormalization prescriptions would violate the above inequality for small enough A.

3 The new observable

3.1 Fermionic representation and ultraviolet divergences

One would prefer an observable with no linear divergences and less free parameters after

renormalization than P (z, C).

As mentioned already, the Feynman diagrams themselves are those of QCD. We decide

to restrict now the fermion lines to a two dimensional embedded closed smooth manifold,

Σ, and add the required Dirac indices. We ensure that gauge invariance is preserved. To

keep matters simple, we want the two dimensional manifold to be flat in the induced metric

from R4. We take Σ to be a torus of sides l1,2. The boundary conditions on the fermions

are chosen as antiperiodic in both directions. Now the fermions will have dimension 1/2

and renormalization will not require terms with more than 4 fermions. Thus, the number

of counter-terms will no longer grow with N . Moreover, if we keep the fermions massless

there will be a continuous chiral symmetry eliminating the last potential linear divergence.

This will hold also when the fermion mass is reinstated.

Formally, if we take l2 → 0 we get two copies of the fermion system used for P (z, C).

Thus, the new observable ought to still carry the essential information carried by the

old one.

Consider now a uniform scaling of the embedded torus: l1,2 → ρl1,2 and introduce a

shape parameter 0 < τ = l1
l2
< ∞ which is left invariant by this scaling. At fixed τ , as

ρ is varied, maximally separated fermions will feel confining forces for ρ ≫ 1 and 1
distance

– 6 –
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forces for ρ≪ 1. We guess therefore that the two regimes will be separated by a crossover

which will become a phase transition at infinite N . As ρ decreases through some critical

value, the spontaneously broken chiral symmetry will be restored. To some extent, this is

a reincarnation of an old idea in [17], which in turn was motivated by [18].

At finite cutoff, before the addition of the 4 fermion counter-terms, this large N tran-

sition will be reflected in the eigenvalue spectrum of D2(Σ), the Dirac operator acting on

the torus fermions. This is analogous to an observation we made in the previous section.

However, it is well known that on the broken side the portion of the spectrum of D2(Σ)

that is close to zero is described by a simple random matrix model [19]. This fact has

become a potent tool for numerically determining that chiral symmetry is spontaneously

broken. The random matrix description ceases to hold when chiral symmetry is restored.

Here are some equations summarizing the above. The embedded torus Σ is defined by

x(σ), σ is short for σα, with α = 1, 2.1

x1(σ) =
l1
2π

cos
2πσ1

l1
; x2(σ) =

l1
2π

sin
2πσ1

l1
; x3(σ) =

l2
2π

cos
2πσ2

l2
; x4(σ) =

l2
2π

sin
2πσ2

l2
(3.1)

The induced metric on the torus is

dσ2 = dσ2
1 + dσ2

2 (3.2)

We define a two component gauge potential aα on the torus by

aα = Aµ(x(σ))
∂xµ
∂σα

(3.3)

The Dirac matrices on the torus are

γ1 =

(

0 1

1 0

)

γ2 =

(

0 −i

i 0

)

(3.4)

The new observable is:

Q(µ,Σ) =

∫

[dAµ]
[

dψ̄dψ
]

e
− 1

4g2

R

d4xTrF 2+
R

Σ
d2σψ̄(σ)[γα∂σα−µ−iγαaα(σ)]ψ(σ)

∫

[dAµ] e
− 1

4g2

R

d4xTrF 2
(3.5)

The two dimensional massless Dirac operator is:

D2(Σ) = γα∂σα − iγαaα(σ) (3.6)

Denoting the Hermitian generators of su(N) in the fundamental representation by T j,

j = 1, . . . , N − 1 the nonabelian fermion current coupled to a is given by

Jjα(σ) = ψ̄(σ)γαT
jψ(σ) (3.7)

1From the context it should be clear when σ1,2 refers to these coordinates and when to the first two

string tensions among the σk.

– 7 –
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The abelian vector current is

Jα = ψ̄(σ)γαψ(σ) (3.8)

Power counting and symmetries allow for two local four-fermion counter-terms at µ = 0:

L1 = JjαJ
j
α, L2 = JαJα (3.9)

L1 can be replaced by a chiral invariant linear combination of terms made out of the product

of two terms bilinear in the fermions, each a SU(N) singlet. Suppose one integrates out the

Yang Mills and ghost fields first. Now, one keeps the four fermion terms of order g2, but

drops all higher order terms in g2. We leave aside the question how valid this approximation

is, but intuitively it should capture correctly some of the physics if Σ is small in units of

Λ−1
SU(N). This makes it possible to use standard methods [20] to solve the fermion model

exactly in the large N -limit, even though the induced four fermion term is non-local [21].

The required L1 counter-term can also be exactly taken into account in the large N limit.

As is well known, this provides expressions for some observables that are non-perturbative

in the ’t Hooft coupling g2N .

Both counter-terms are dimensionless, so there are no ultraviolet divergences worse

than logarithmic. The Thirring term L2 is probably not strictly needed, and would add a

free parameter to the theory if included [22]. L1 is certainly needed, as indicated above.

To identify the ultraviolet divergences it is enough to consider the case where our closed

Σ is replaced by an infinite two dimensional plane. The Aµ Feynman gauge propagator in

four dimensional Fourier space induces an effective aα propagator in two dimensions:

∫

p2
‖
+p2⊥≤Λ2

d2p‖d
2p⊥

(2π)4

f(p2
‖)

p2
‖ + p2

⊥

=

∫

p2
‖
≤Λ2

d2p‖

(2π)3
f(p2

‖) log
[

Λ/|p‖|
]

(3.10)

We have not yet carried out a detailed direct diagrammatic analysis of all

ultraviolet divergences.

3.2 General properties

The new observable thus achieves the main objectives of reducing all ultraviolet divergences

to logarithmic and making the number of needed counter-terms N -independent. The new

observable is more amenable to perturbation theory, as infinite sets of diagrams can be

summed using results from large N vector models and non-analytic dependencies in the

Yang Mills coupling can be generated [21]. A calculation of the relevant β-functions for

this system is left for the future. Perturbation theory should work for small l1,2, but for

large l1,2 we need something different. Possibly, an effective two dimensional field theory

could be found and then we would need to match it to the four dimensional underlying

YM theory. Alternatively, although we do not have a clear candidate for an effective string

description, we could guess one. If we have an effective description of the Wilson operators

for large loops by using open strings whose ends are restricted to the curve C, maybe a

similar effective description employing open strings now restricted to end on Σ (a sort of

D-brane) would work for large Σ.

– 8 –
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One issue left to address is how confinement is reflected by the new observable, qualita-

tively and quantitatively. We already noted that the limit τ → 0 takes the new observable

into the old one, so confinement will be seen. There are several new ways in which the new

observable would reflect confinement. It is well known [12] that one can write a formal

expression for the chiral condensate in terms of a sum over Wilson loops. Here, the chiral

condensate would be a 2D one, but the Wilson loops, although restricted to Σ will have

four dimensional values.2 Large loops will exhibit the area law because of four dimensional

confinement and those loops would make a contribution to the condensate which is similar

to the contribution made in two dimensional gauge theory if the two fundamental string

tensions are matched. Note however that the minimal area may not lie on Σ and therefore

even for large loops one cannot expect an asymptotically perfect match. In addition, in two

dimensional gauge theory there is no shape dependence, while in four dimensions there is.

Nevertheless, from the point of view of the fermionic condensate the four dimensional char-

acter of the ambient YM theory reflects itself mostly at small Wilson loops. It is unclear

by how much the relation between the σ1 and the condensate would differ in our system

from an effective two dimensional one. Note that two dimensional Yang Mills theory with

the inclusion of L1,2 is still exactly solvable at infinite N [23].

The finite nature of the torus reflects itself in the free fermion propagator. If the gauge

fields were truly two dimensional, at infinite N the dependence on the size of the torus

would disappear from intensive quantities [24]. The mechanism behind this relies on the

extra finite-temperature-like Z2(N) symmetry of the gauge sector which acts non-trivially

on Polyakov loop operators on the torus. These symmetries are absent when the gauge

fields are induced from the four dimensional world. However, for a large enough torus

the four dimensional Wilson loop operators interacting with the fermions as Polyakov loop

operators have eigenvalue distributions that are very flat. The deviation from total flatness

is exponentially small in the area because of four dimensional confinement. Thus, up to a

small correction, the fermions free energy per unit torus area will become independent of

the volume at very large N . More precisely,

lim
N→∞

1

Nl1l2
log[Q(µ,Σ)] (3.11)

would approach its infinite l1,2 limit (at fixed τ 6= 0,∞) with a correction that goes as

exp[−σ1min2(l1, l2)]. We see that in the large N limit the fundamental string tension

controls the large scale behavior of the new observable, just as that of the old one.

A last issue of comparison is that in the old observable the fermions can be easily

integrated out (this is how they were introduced in the first place) leaving one with explicit

expressions in terms of Wilson loop operators. The fermions of the new observable can

also be integrated out, leaving a more complicated observable behind. If Σ were a two

sphere the answer has an explicit form [25]. For a torus some care is required with loops

wrapping the torus and we are not sure whether a closed expression can be written down.

Recall that a local form of the answer requires the introduction of a third dimension along

which the gauge field is smoothly deformed. In our application one needs not invent such

2We are assuming N ≫ 1 where the feedback of the fermions can be neglected.
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a deformation: Σ can be “filled” in two topologically distinct ways inside the R4 and many

possible deformations are available.

3.3 Hamiltonian version

One can imagine a Hamiltonian formulation, in which we choose l2 = ∞. Then the infinitely

heavy finitely separated source and sink picture associated with an ordinary rectangular

Wilson loop, and used for the extraction of the heavy quark-antiquark potential, has a

simple generalization. Instead of a nailed down pair of fundamentals we have a circle on

which any number of fundamentals can travel and many types of states will contribute.

The locations of the charges are still restricted in four dimensions, but not to two separated

points, but rather to a common circle. So, in particular, as time evolves, we guess that

states made out of diametrically opposite quark-anti-quark pairs, rotating around each

other, would develop. This is closer to the semi-classical picture we usually invoke when

extracting the experimental string tension from meson Regge trajectories in QCD than the

static heavy quark potential we get from traditional Wilson loops. Moreover, since there

is no fundamental matter in the bulk, the rotating string along the diameter cannot just

decay by pair formation, as it would in QCD [26]. To be sure, while our observable lets the

pair members rotate round each other, it still constrains the radius of their trajectory to

a fixed number, so the four dimensional argument cannot be fully carried over. In short,

the new observable provides an opportunity to look at mesonic states of definite angular

momentum in some direction.

Replacing the finite torus Σ by an infinite cylinder does not eliminate the large N phase

transition. The Hamiltonian system is expected to undergo a large N phase transition of

spontaneous chiral symmetry breaking as the compact direction is shrunk, in analogy with

the finite temperature Gross-Neveu model [27].

4 Numerical results for large N

4.1 General observations

One cannot put a smooth closed loop on a hypercubic lattice. One has to allow corners,

and there are extra logarithmic divergences associated with these. When dealing with

Wilson loops the definition of the observable we used in our numerical work [4, 8, 9] also

eliminated these divergences.

Similarly, one cannot put a smoothly embedded torus on the lattice. However, the

worst new ultraviolet divergences induced by the extra folds one requires are weaker than

the leading ones, which now are just logarithmic. Thus we can use a torus embedded into a

four dimensional hypercubic lattice in which the circle of circumference l1 in Σ is replaced

by a square of perimeter L1 (in lattice units and divisible by 4) and similarly the circle of

circumference l2 in Σ is replaced by a square of perimeter L2. It is now straightforward to

adapt the overlap [28] action to the lattice Σ so constructed. This allows us to have exact

chiral symmetry on the lattice.

Since the fermions only contribute at order N to the free energy, to determine what

happens at N = ∞ it suffices to keep them quenched, that is their feedback on the dis-
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tribution of the gauge fields can be ignored [29]. This simplifies the numerical work by a

significant amount.

Equation (3.10) tells us that in order to go to the continuum limit we need to add

a 4 fermion term on the embedded surface. Its sign will be the opposite of the standard

sign; after a Fierz transformation and a Hubbard-Stratonovich decoupling, the kernel of

the quadratic fermion action no longer obeys a property under hermitian conjugation that

simplifies the numerical computation of its eigenvalues. Our numerical tests below did

not include 4 fermion terms. We looked for numerical evidence for spontaneous chiral

symmetry breaking at infinite N in the lattice regularized theory. More work would be

needed to go to the continuum limit.

Even as a pure lattice study, our numerical work is just exploratory; our main objec-

tive was to find examples of parameters for which we can be reasonably sure that chiral

symmetry is spontaneously broken at N = ∞ and other examples where we can be reason-

ably sure that chiral symmetry is preserved by the vacuum of the fermionic system even at

N = ∞. This provides evidence for the existence of at least one large N phase transition.

The simplest assumption is that there exists only one such transition, but we have certainly

not ruled out numerically the existence of more transitions than one. Our extrapolations

to infinite N are simplistic and would need to be refined in future work.

4.2 Parameter ranges

The four dimensional gauge field at fixed lattice coupling, b = 1
g2N

and given N , is generated

in the standard manner on lattices of sizes 64 and 104. We looked at the range of b-values

0.348–0.367. The highest b value is determined by the requirement that the 104 torus still

be in the confining phase at N = ∞. The lowest b value is determined by the requirement

that we stay out of the infinite N strong coupling phase, at least by metastability. The

smaller volume can be used for smaller b-s in the range.

A two dimensional finite flat torus of size 4L × 4L is constructed by the Cartesian

product of a closed L×L loop in the (1,2) plane by another closed L×L loop in the (3,4)

plane. We looked at sizes 4L = 8, 16.

A “semi-infinite” two dimensional torus of size 4L in its finite direction is embedded in

the four dimensional lattice forming one closed L× L loop in the (1,2) plane and another

loop in the 3 (or 4) direction closed by winding around the lattice. At N = ∞, because of

continuum reduction, the torus may be viewed as infinite in the winding direction so long

as we are in the confined phase. Again, we looked at 4L = 8, 16.

We construct the two dimensional overlap operator with anti-periodic boundary con-

ditions on the two dimensional torus, using the four dimensional gauge fields residing on

the links of the embedded torus. We compute the two lowest positive eigenvalues of the

overlap Dirac operator for 100 random distinct translations of the two dimensional torus

on the four dimensional lattice. In this manner we get an average value for the two lowest

eigenvalues, λ̄i, i = 1, 2. We also obtain the distribution of r = λ1
λ2

, denoted by P (r), for

each four dimensional gauge field configuration. We obtain an estimate for
〈

λ̄i
〉

, i = 1, 2,

〈r̄〉 and 〈P (r)〉 by averaging over several configurations.

– 11 –
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Figure 1. Lowest two eigenvalues as a function of 1/N at b = 0.350 for a 16 × 16 torus embedded

in a 104 lattice.
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Figure 2. Distribution of the ratio of the two lowest eigenvalues for N = 13 and N = 19 at

b = 0.350 for a 16 × 16 torus embedded in a 104 lattice.

4.3 Finite torus

4.3.1 Broken chirality

We present one example in the phase of broken chirality (L = 16, b = 0.350 on a 104

lattice). Figures 1 and 2 show data for N = 13 and N = 19 and provide evidence for the

absence of a spectral gap (figure 1) and for chiral random matrix behavior of the eigenvalue

ratio distribution (figure 2). The two lowest eigenvalues in figure 1 extrapolate at N = ∞ to

small negative numbers which we interpret as saying that both eigenvalues go to zero. One

can also calculate the average eigenvalue ratio and extrapolate it to N = ∞; one obtains a

number comfortably close to the chiral random matrix theory prediction, 0.37674227 . . ..

The absence of a gap and the agreement with chiral random matrix theory are strong

indicators that chiral symmetry is spontaneously broken in the N → ∞ limit at this choice

of the parameters L and b.
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Figure 3. Lowest two eigenvalues as a function of 1/N at b = 0.348 for a 8× 8 torus embedded in

a 64 lattice.
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Figure 4. Distribution of the ratio of the two lowest eigenvalues for N = 13, 19, 23, 31, 37 at

b = 0.348 for a 8 × 8 torus embedded in a 64 lattice.

4.3.2 Preserved chirality

Our other example (L = 8, b = 0.348 on a 64 lattice) is in the phase of preserved chirality.

We consider a larger range of N values, N = 13, 19, 23, 31, 37 because this case requires a

more thorough investigation of the N -dependence: chiral random matrix behavior might

set in at only high values of N , and we want to rule this out. The results are shown in

figure 3. Figure 4 shows that the distribution of the ratio of the two lowest eigenvalues gets

more peaked closer to unity as N is increased, becoming more and more different from the

chiral random matrix theory result.

The existence of a gap separating the lowest eigenvalue from zero at infinite N implies

that chiral symmetry is preserved at this set of L = 8, b = 0.348 values.
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Figure 5. Lowest two eigenvalues as a function of 1/N at b = 0.363 for a 16 × 10 torus embedded

in a 104 lattice.
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Figure 6. Distribution of the ratio of the two lowest eigenvalues for N = 13, 19, 29, 37 at b = 0.363

for a 16 × 10 torus embedded in a 104 lattice.

4.4 Torus with one infinite extent

The behavior of the lowest two eigenvalues on a torus with one infinite extent follows the

same pattern as on the finite torus.

4.4.1 Broken chirality

We consider a 16 × 10 torus on a 104 lattice and set b = 0.363. The N values we used are

N = 13, 19, 28, 27. The fits to the two lowest eigenvalues in figure 5 are again interpreted

as saying that both eigenvalues extrapolate to zero at N = ∞.

Figure 6 shows that the distribution of the ratio of the two lowest eigenvalues agrees

with the prediction from chiral random matrix theory when extrapolated to infinite N .

The average ratio again approaches the chiral random matrix theory number.
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Figure 7. Lowest two eigenvalues as a function of 1/N at b = 0.363 for a 4 × 10 torus embedded

in a 104 lattice.
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Figure 8. Distribution of the ratio of the two lowest eigenvalues for N = 29 and N = 37 at

b = 0.363 for a 4 × 10 torus embedded in a 104 lattice.

We conclude that chiral symmetry is spontaneously broken at N = ∞ at this point in

parameter space.

4.4.2 Preserved chirality

We now take an 8 × 10 torus on a 104 lattice at b = 0.363 for N = 29 and N = 37. The

plot of the two lowest eigenvalues as a function of 1/N in figure 7 indicates the existence of

a gap at N = ∞. The two lowest eigenvalues in figure 7 extrapolate to values which show

the presence of a gap at N = ∞. Figure 8 shows that the distribution of the ratio of the

two lowest eigenvalues gets more peaked closer to unity as N is increased, departing from

the prediction of chiral random matrix theory.

We conclude that chiral symmetry is preserved also at N = ∞ in this example.
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4.5 Comments on numerical work

We have carried out more types of fits in the above selected examples and also simulations

at other parameters sets. These studies showed that the simplistic extrapolations of 1
N

to

zero have systematic errors that can overcome the statistical ones. We also found points

in parameter space where we could not credibly make a determination about the status of

chiral symmetry at infinite N . Therefore we cannot rule out the existence of some more

esoteric phases in the large N limit. If more esoteric phases do turn out to exist, there

will be more than one large N phase transitions and the large N structure of the crossover

may be more complicated than we would like.

These issues need to be addressed. It is possible that the computational resources at

our disposal at the moment won’t be able to reach the values of N needed to settle these

questions conclusively.

5 Summary and discussion

Our main point was to introduce a system coupling two dimensional fermions to four

dimensional gauge fields. This provides new non-local observables in pure Yang Mills

theory and we gave reasons why they are interesting. We hope that these observables in

pure gauge theory will produce parameters expressible in terms of ΛSU(N) by an asymptotic

matching of perturbation theory to a yet unknown, effective, systematic, description of

long distance physics. We provided numerical evidence that these new observables vary

with scale through a crossover where a nonanalytic behavior will set in at infinite N . We

hypothesize that at N = ∞ the crossover becomes a phase transition governed by a well

understood universality class.

If this hope pans out, we could match parameters between the two descriptions and use

them in other circumstances. For example, one could consider fermions living on the infinite

z, t plane while the gauge fields it couples to live on infinite Minkowski space x, y, z, t. It

is now convenient to pick the light cone gauge in the z, t directions and consider scattering

events of objects made out of fermions in the z, t plane. Unlike in the cylinder or torus

case, for a scattering event characterized by a single scale, one expects that even at infinite

N the crossover as that scale is varied from short to long will be smooth. The infinite N

phase transitions we are studying are observable dependent and so are their universality

classes. The basic idea is then to use an observable which has a large N phase transition

in order to relate the parameters of a long distance effective theory to those convenient at

short distances, and then exploit the general applicability of the long distance theory to

calculate other observables, which are smooth in scale even at N = ∞.

The infinite spacetime could be taken to be three dimensional, in which case the

ultraviolet divergence (3.10) goes away. It is possible that in this case one can do without

a four fermion counter-term in the continuum. One cannot embed a torus flatly in the

ambient three dimensional spacetime, and therefore one might as well use a sphere and

deal with its curvature. On the lattice the sphere would be replaced by the surface of a

cube equipped with 8 singular corners. We leave further study of this case for the future.
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